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Abstract - The common key to success in all sectors is perfect attire. The first thing a person showcases is his/her personality, a 

significant portion of which is taken by the attire. The art of dressing up in the right manner is not known to all. Not everyone is 

skilled to be a fashion stylist. But it is important that one has his/her style right to get recognized. This project uses machine 

learning to create an application that will act as a fashion stylist for the end user. The application takes as input the event the 

user wants to dress for and an image of the user. The image can be captured in real-time, or a pre-existing image can be fed to 

the application. The application performs feature extraction on the image and displays certain features as a result. These include 

gender, hair color, hair length, height, body shape, skin tone and the event for which the attire seems best suited. The system 

then recommends an image that suggests an attire the user can consider wearing for the kind of event he/she mentioned 

according to his/her body features. This recommendation is based on the features extracted from the user's image and the 

previous learnings of the model. The technologies used for the project are Python and TensorFlow. 
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1. Introduction 
Rachel Zoe says," Style is a way to say who you are 

without having to speak" [1]. A person's style says hundreds 

of words about her without actually saying anything. Having 

said that, not everyone knows the art of styling themselves, 

and not everyone can afford a personal stylist. The project's 

aim is to create a machine learning-based electronic personal 

stylist for daily use with just a few clicks. We present an 

application that is artificially engineered to suggest attire for a 

person based on factors such as the individual's body shape, 

hair length, the kind of event he/she wants to dress up for, 

etcetera. The application uses state-of-the-art machine 

learning techniques, including convolution neural networks, 

to reach its goal.  

 

The approach used in the project to create all eight 

classification models is called Data driven approach in that the 

model is fed with training data that consists of pre-labeled 

images. The models look at these examples and learn the type 

and other details about the class. The hyperparameters of the 

models were tuned by dividing the training dataset further to 

obtain a set of validation data from it. The adjustment was 

made to ensure that the model was behaving well. 

Hyperparameters are the high-level concepts defined before 

the training process starts, such as setting up the learning rate 

or the number of layers. The subsequent chapters will discuss 

the adjustments made in the hyperparameters. The following 

sections will talk about a few concepts used in the creation of 

the application in detail. 

1.1. Neural Network  

A neural network is a biologically inspired system that 

tries to act like a human brain to perform activities like 

classifying an object [2]. It is a network or a graph of many 

neurons that are connected to each other in an acyclic fashion 

to avoid any infinite loop. The network is arranged in the form 

of various layers consisting of neurons. The neurons of one 

layer are connected to the ones of the next layer. However, the 

neurons in the same layer are not connected to each other. A 

layer in which all the neurons are connected to all the other 

neurons of the adjacent layers is called a fully connected layer. 

The architecture of a two-layered neural network is shown 

below. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 1 Neural network architecture 
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A neural network is made up of an input layer, an output 

layer, and some hidden layers [3]. In Figure 1, the example has 

one hidden layer and (4+2) = 6 neurons. The input is not 

considered as a layer, and neither are the neurons it has, in the 

total count for neurons. The number of hidden layers in a 

neural network is variable. In Figure 1, there is only one 

hidden layer. There is a transfer of knowledge between the 

neurons of one layer to the other, just like the neurons in a 

brain. The number of layers varies from model to model. The 

more the number, the better the handling of complex data. But, 

a lot of layers can sometimes lead to overfitting of the model. 

Overfitting is a phenomenon in which a model is too fit to 

classify a particular type of data, thereby resulting in a biased 

prediction. Therefore, for a simpler dataset, fewer layers are 

preferred.  

1.2. Convolutional Neural Network (CNN)  

 A CNN is a type of neural network with only some 

differences. The most important difference is that the input to 

a CNN is a dataset composed of images. The network assumes 

that the dataset will consist of images and is, therefore, 

prepared to handle three dimensions: width, height, and depth. 

The CNN architecture is shown in the Figure 2.  

1.3. Inception Model  

1.3.1. TensorFlow  

TensorFlow is a platform to execute machine learning 

algorithms and visualize the results [14]. This project uses 

TensorFlow for computer vision and information retrieval. It 

provides a lot of APIs enabling the implementation of deep 

neural networks. The advantage of using TensorFlow is that 

the result is device-independent, making it flexible [14].  

1.3.2. Inception in TensorFlow 

This project uses Inception-v3 [17] as the base to build 

the application. Inception is a software based on convolutional 

neural networks and uses TensorFlow. This model has been 

trained on the ImageNet [15] dataset and is available for 

research and development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 CNN architecture  

The project uses the Inception model for development 

because of its low computation cost and better performance 

[17], making it the best fit. The details about the changes made 

to the inception model for this project are discussed in Chapter 

2.  

 

1.4. Kivy  

The UI of the project has been designed using Kivy [13] 

which is an open source software. Kivy allows the same 

application to be deployed on three platforms, viz. Desktop, 

Android, and IOS. This project uses the services for the 

Desktop version of the software. Additionally, Kivy provides 

a broad range of tools to access the hardware of the device and 

various support libraries to make the user interface appear 

fancy.  

 

1.5. Dataset  

The image dataset used in the project development has 

been collected from Liu et al. [16]. The authors provide a rich 

dataset comprising 800,000 images which are highly 

annotated and are taken against a variety of backgrounds. The 

project uses some of these images for feature detection of 

clothes worn by humans against a plain and bright 

background. Approximately 1000 images were used from this 

dataset to extract the necessary information. The techniques 

used to obtain this information are described above. 

1.6. Related Work  

Machine learning has impacted fashion in many ways. 

Companies like Amazon are using recommendation systems 

to suggest outfits to users based on their search history. They 

train their models according to the user requirements. But the 

field still has a way to go. The following are some of the 

inspirations for our work.  

1.6.1. Style-Me  

Style-Me [18] is an application that uses AI techniques to 

create a fashion stylist. The authors use a score-based method 

to rank nearly 500 looks. The dataset created for this 

application consists of" 32 dresses and 20 shoes for 4 different 

events" [18]. The application is based on the user's 

perspective, and the scores are adjusted accordingly. The 

authors have trained the models using Artificial Neural 

Network [18]. The system architecture of Style-Me consists of 

5 elements, viz." an Initialization program, Database, Style 

Engine, Learning Components and User Interface" [18]. The 

application starts with the initialization program, which takes 

input from the user in the form of a quiz. The quiz consists of 

8 questions, the result of which is a style out of the six 

predefined styles in the application, namely, Classic, 

Dramatic, Gamin, Ingenue, Natural, and Romantic. Every 

style has its database which is accessed once the style is 

obtained from the user's quiz results. The database consists of 

various tables, some of which include information related to 

the clothing, and one table consists of a view. The view stores 
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information obtained by querying multiple tables to keep them 

in one place. The output of the quiz is also fed to the Style 

Engine, which pairs different clothing attributes, such as 

dresses and shoes and stores them in a new table in the 

database. Learning components comprise an artificial neural 

network that is trained on the dataset obtained from the 

database portion of the architecture. The output of the learning 

components is a score indicating how good the newly 

designed look is. The authors performed five different 

experiments to adjust the hyperparameters such that the 

correlation coefficient with the item's attribute is the 

maximum. The final choice included using a Multilayer 

Perceptron classifier with one hidden layer consisting of 20 

hidden units at a learning rate of 0.3 and a momentum term of 

0.1. Momentum is used to speed up the process and improve 

the performance.  

1.6.2. Google Muze  

Google, in collaboration with Zalando and StinkDigital, 

proposed a design engine that is capable of creating an outfit 

for a particular person [10]. The person acts as a muse for the 

neural network, which has been trained already. The system 

asks the user some questions about their preferences and 

recommends fashion looks tailor-made for them. The dataset 

used to train the model was created by 600 fashion stylists 

[10]. The design is built on TensorFlow. However, the results 

of the project are not compelling and need a lot of 

improvements before the application can be used in real-time 

as a fashion stylist [6]. 

2. Design  

The project's aim is to create a computer vision-aided 

application that acts as a personal stylist for a human being. 

The project has two parts: extract and display certain features 

of a person based on their image taken in real-time or fed 

directly to the application, and recommend an outfit to the 

user as per their features and the kind of event that they 

selected. The application takes a picture of the user and asks 

him/her about the kind of event for which he/she would like 

to dress up. After analyzing the image and the event, the 

application recommends an outfit to the user. The following 

subsections explain the architecture of the application and the 

working of all the components.  

 

2.1. Architecture 

The system design of the project is shown in Figure 3. It 

consists of three components that are explained in the 

following sections.  

2.1.1. Input  

The first screen of the application accesses the camera of 

the device and takes a picture of the user. The image is 

obtained by taking a screenshot of the application screen. The 

image thus obtained is cropped to extract the central part to 

help increase the performance of the models. For example, a 

test image of a user capturing the application is shown in 

Figure 4. The image cropped from the original image and fed 

to the models is shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 3 System design 
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The processed images are fed to all the models, which 

have been pre-trained, to obtain the features of a person, 

including the' event' for which the person seems to be dressed 

up. A second input taken from the user is the actual occasion 

for which he/she wants to dress up. This value is used to 

recommend an outfit to the user that he/she might consider 

wearing.  

2.1.2. Models  

There are eight models in the project, one for gender, hair 

length, hair color, skin tone, men's body type, women's body 

type and event each. The models are created using the 

inception model, as mentioned in subsection 1.3.2. The 

architecture of the inception model is given in the figure 6. 

The inception model is trained on the ImageNet dataset [15]. 

This model could work well for our project only if it was 

trained on our dataset so that it could learn various features 

and aspects of the new images. The dataset used for the same 

has been mentioned in detail in section 2.2. The deep network 

of the inception model consists of 22 layers. The last layer of 

this model was retrained using the dataset for each of the new 

models. The model training will be described in Chapter 3. 

Once all eight models were re-trained, the testing was 

performed on the testing dataset to obtain the accuracy of the 

model. The final models were then used in the application to 

operate in real time. The input image from the user was fed to 

the' gender' model first to obtain the gender of the person. The 

value of the gender helped in determining the body type model 

to be used, i.e., men's body type for a male and women's body 

type for a female. The image was then fed to all seven models, 

and the results of the same were displayed on the output 

screen for the user's information.  

2.1.3. Mapping  

The output from the seven models was fed to the mapper 

to find the data that resembles the features of the user the most. 

This process was done in the following seven steps. 

The data was filtered according to the gender of the user. 

This filtration reduced the mapping data. The next filter 

applied was that of the event. The user gave as input an image 

and an event. It is important that the outfit suggested to the 

user be well suited for the kind of event the user chooses. 

Therefore, the event filter had to be the second one. The 

remaining data was filtered according to the user's body type. 

The body type was given preference because the body type of 

a person is crucial in determining the kind of clothes they 

should be wearing. In the case of a rollback from any further 

steps, it would be safe to determine attire based on the body 

type of a person. [7] says that a woman with a rectangular 

shape should try to wear a long jacket as it makes her look 

lean. It is well proven that the outfit worn according to the 

body type is the one that fits the best. The body shape filter 

was followed by the height filter. The height of a person plays 

a vital role in the outfit determination. For example, as [12] 

says, shorter men should go for vertical stripes in their outfits. 

It does not just look appealing but also makes one seem taller.  

After filtering the data with the height, the hair color filter 

was applied. The reason behind choosing this feature was the 

vast number of categories in it, precisely 24. The number of 

images distributed in each category was very less. Therefore, 

the dataset was reduced massively. The next filter was chosen 

to be the skin tone of the person. Skin tone is not a 

predominant factor, but it can sometimes determine the type 

of colors one should prefer to magnify or suppress a bold look. 

The last filter applied was that of hair length because hair 

length is not an important factor in determining the outfit. At 

any step, if the number of results was empty, the mapper was 

rolled back to the previous step. The rollback was done 

assuming that the order chosen for the filters was the best fit 

for every case.  

 

2.1.4. Output  

The output is shown to the user in two forms: their body 

features and an outfit recommended as per their event request 

and their body features. Figure 7 shows a sample output 

screen. It consists of the cropped input image that was fed to 

all the models, the various features displayed in the form of a 

list and an image of the recommended outfit per the event the 

user selected.  

 

2.2. Data Collection and Preprocessing 

The image dataset used in the project has been obtained 

from Liu et al. [16]. This dataset consists of 800,000 images 

of models posing in different attires. There are 50 categories 

of labels for all the images and nearly 1000 attributes which 

leaves no room for redundancy and helps better the learning 

of the model. The images are annotated to give a diverse range 

of information about the outfit. The authors have created four 

benchmarks called" Attribute Prediction, Consumer-to-shop 

Clothes Retrieval, In-shop Clothes Retrieval, and Landmark 

Detection" [16]. The work is available to everyone for further 

enhancement. The seven models created for the project 

required training. The information needed to train the models 

was the image and the ground truth value of the feature the 

model was representing for that image. The dataset obtained 

from Liu et al. consisted of the images, but the ground truth 

value was not available which was the limitation in the dataset. 

There were two options for obtaining the ground truth values: 

asking a human to determine it or asking a machine to identify 

it. There are certain built-in libraries in computer vision to 

recognize values of features like the eye color of the person in 

a picture. However, these libraries are not available for all the 

features that were required for the project.  

 

Moreover, the accuracies of these libraries are not 100% 

implying that the ground truth values will not be 100% 

accurate. That said, if a human determines the value, such as 

the hair color of a person in a picture, he/she may not be 100% 

correct either because every human perceives things 

differently than any other human. Therefore, the accuracy of 
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the model trained with a dataset for which the ground truth has 

been determined by a human may not be 100%, but it is still 

more reliable than a machine, given the fact that machines 

have yet to match the accuracy of a human brain by many 

folds. The ground truth values were obtained from humans in 

two different forms. One set of data was obtained in the form 

of a survey, and another set was created by us. The survey was 

created using the software Qualtrics courtesy of the Rochester 

Institute of Technology [11]. There were two different 

surveys, one for men to take [4] and another for women to take 

[9]. The surveys had five images each and six questions about 

the images, such as the body type and height of the person in 

the image. Adding questions to the Qualtrics software was an 

uncomplicated task, but adding a new image in each section 

required tweaking in the Javascript. These images were 

generated and added randomly to the page so that the same 

image was not analyzed again and again. At the end of the 

survey, a few questions about the survey taker were asked to 

gather information about their features. This information was 

taken with the initial idea of testing the model using these.  

 

However, the idea was later dropped, and the information 

was not used anywhere in the project. A total of 195 people 

took the survey, out of which 121 were females and 74 were 

males, leading to a total of 975 data records. The second set of 

the dataset was created by us manually by filling out the 

ground truth values of the features. It comprised a total of 122 

records. The dataset obtained by both the methods described 

above was not enough to train the models. Each model had a 

set of categories into which the dataset was divided, such as 

six categories for skin tones. The number of images left in 

each category was very few at the end of the distribution 

process and did not meet the minimum requirement of the 

Inception model. It required that each folder had at least 20 

images in it to train the model. Therefore, the dataset needed 

augmentation. The number of records was increased 11 times 

by augmenting data in 11 different ways. These included 

flipping horizontally, rotating, blurring, zooming, adding 

random noise, adding salt and pepper noise, swirling, affining, 

contrasting, increasing intensity, decreasing intensity and 

adding histogram equalization to the images. The new dataset 

comprised 10,725 images for the survey dataset and 1,342 

images for the dataset created by us. However, the ground 

truth values of the augmented images were the same as the 

original images.  

 

The final dataset was split into three categories: Training, 

Validation, and Testing in the ratio 80:10:10. This split was 

done by the inception model. The training dataset is the subset 

that is used to train the models. The models learn trends and 

features from the training dataset so that they can classify new 

images later. The validation dataset is used to test the model 

during the training period to make sure that the model is doing 

good. If the accuracy during validation is substandard, the 

hyperparameters are adjusted to increase it. We faced a 

situation like this during the training process and had to make 

the necessary adjustments, which will be discussed in Chapter 

3. If the validation accuracy is exceptionally high, it implies 

that the model is overfitting and the dataset needs to be 

changed accordingly. We did not face this issue during model 

training. Once the models were trained and validated, they 

were tested on the test dataset. The testing dataset has to be 

completely new to the models to avoid bias and obtain 

accurate results. The accuracy of both the models will be 

discussed in Chapter 4.  

 

2.3. System Requirements  

2.3.1. Hardware 

Camera Requirements  

The desktop application requires a camera in the device 

to capture the image of the user in real time. The camera used 

during the project experimentation was the inbuilt 720p 

camera of the MAC laptop.  

Device Specifications 

The device used for the project was a MAC laptop with 

MacOS Sierra, a 2.7 GHz Intel Core i5 processor consisting 

of 8 GB memory and 128 GB storage.  

2.3.2. Software  

Language  

The programming for the application was done in Python 

version 2.7.11.  

 

UI Framework 

The Python framework used for the creation of UI is Kivy 

[13]. The system requires Kivy to run the application.  

Model Framework  

The Python framework used for the creation of neural 

network models for feature extraction is InceptionModel [8].  

 

 
Fig. 4 Originally captured image 
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                             Fig. 5 Cropped image 

 

 
Fig. 6 Inception Model Architecture, Image Courtesy: [8] 

 
Fig. 7 Output screen sample 

 

3. Implementation 
The project has an MVC (Model-View-Controller) 

design. The user interface of the application consists of a 

screen which asks for text input from the user and an image of 

the user, as described in Section 2. The data is collected by the 

View part of the application and is given to the controller. The 

controller checks the image for the gender of the person and 

passes it to the appropriate models. For example, if the gender 

is male, the image will be passed to the men-body-type model 

and not the women-body-type model. The models process the 

results and give them to the controller. The controller finds the 

most appropriate result and sends it to the view to display to 

the user.  

 

3.1. View  

The UI of the application is created using a library of 

python called Kivy [13]. Kivy offers hardware support over 

three platforms: desktop computer, Android, and IOS. It has 

many widgets for the construction of an application, such as 

an input box, dropdowns, images, buttons, etcetera. Three of 

the many widgets were used in the application UI, viz. 

camera, button, and dropbox. The dropbox widget was used 

to offer a list of options for the events from which the user 

could choose one. The camera widget was used to access the 

camera of the device on which the application was running. 

Once the camera was active, a screenshot of the screen was 

taken using the button widget and the screenshot feature of the 

window provided by Kivy. The event and the image were 

passed to the controller for further processing. 

 

3.2. Controller   

The controller took the image and passed it to the 

appropriate models as mentioned before. The output of all the 

models was displayed to the user. Based on the output of the 

Hair Color model, an image of the hair color was passed to 

the view to display to the user. The image of the hair color 
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was displayed to help the user understand the color, which 

becomes very difficult with just the name of the color, given 

the vast variety of hair colors in the classification. The 

controller also acted as the mapper for the second part of the 

application. The second part of the application was a 

recommendation system where an image was presented to the 

user as a recommendation of what he/she could wear based on 

the event he/she provided. The controller chose an image from 

the database that resembled the features of the user the most 

and passed it to the view. The matching was done by the 

process described in the subsection 2.1.3.  

 

3.3. Models  

The Inception model has been used as the base model to 

create eight different models to extract various features of a 

person in an image. The last layer of the inception model was 

retrained on each dataset for each model. The training process 

was iterative, as the hyperparameters needed adjustments 

because of low accuracies. In the first training cycle, the 

learning rate was set to 0.01, and the number of iterations was 

set to 4000. These hyperparameters gave poor accuracies with 

the lowest accuracy being 34.3% for the height model. The 

learning rate was then reduced to 0.001, but the results became 

worse than for the previous learning rate. Therefore, the 

learning rate was kept stagnant at 0.01 for the rest of the 

experimentation. The number of iterations was then increased 

to 70000, 90000, 110000 and 120000. The best results were 

obtained from the model with a learning rate of 0.01 and a 

number of iterations of 120,000. Figures 8, 9 and 10 show the 

decrease in entropy with the increase in the number of 

iterations. Entropy, in physics, refers to randomness. But in 

terms of big data, entropy refers to unpredictability [5]. It is a 

measure of determining the amount of useful information in 

the data. The higher the entropy, the more unpredictable the 

data is. Therefore, it can be inferred that the value of a 

hyperparameter that leads to lower entropy must be preferred. 

It can be seen that the entropy for the 120,000 iterations is 

almost 0. On the contrary, the entropy for 70,000 iterations is 

almost 0.5, and that for 90,000 iterations is almost 0.25. 

Therefore, it can be concluded that 1,20,000 iterations were 

the best choice for the project.  
 

 
Fig. 8 Cross entropy for 70,000 iterations 

 
Fig. 9 Cross entropy for 90,000 iterations 

 

4. Analysis  

4.1. Experiments  

The application was tested in real-time on a few people 

with different features in front of the same background and the 

same lighting. Four of the subject results are discussed below. 

The ground truth values for the measurement of accuracy were 

obtained by asking for the true feature values of the test 

subjects. The results of the questionnaire were compared to 

those obtained from our application. The accuracies are listed 

in Table 1.  

 
Fig. 10 Cross entropy for 1,20,000 iterations 

 

4.1.1. Subject 1  

Figure 11 shows the results for subject 1. It can be seen 

from Table 1 that the combined accuracy of the models is 

42.86%. The correctly identified features were Gender, Hair 

length and skin tone. The result of the Body Type feature was' 

rhomboid' which is very close to the truth value' inverted 

triangle'. In the image fed to the model, as shown in the left 

image of Figure 11, the shoulders seem a little broad because 

of the pose. Therefore, the model confused it with the 

rhomboid shape.  
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Fig. 11 Application results on subject 1  

4.1.2. Subject 2 

Figure 12 shows the results for subject 2. It can be seen 

from Table 1 that the combined accuracy of the models was 

28.57%. The correctly identified features were gender and 

skin tone. The subject's body shape is oval, but in the image, 

it looks like a triangle, confusing the model. The hair length 

of the user is long. 
  

 

In the image, the hair is visible as growing upwards. But 

for the model, long hair length implies that the hair is growing 

downwards beyond the head.  

 
Fig. 12 Application results on subject 2  

4.1.3. Subject 3 

Figure 13 shows the results for subject 3. It can be seen 

from Table 1 that the combined accuracy of the models is 

57.14%. The correctly identified features are Gender, Body 

Shape, Hair length, and Event.  

 

The skin tone of the subject is very light. But in the image, 

it seems a little darker because of the poor lighting. Hence, the 

incorrect skin tone by the feature. Although the value is given 

by the model was white and fair, which is very close to the 

actual value.  

 
Fig. 13 Application results on subject 3 

 

 4.1.4. Subject 4  

Figure 14 shows the results for subject 4. It can be seen 

from Table 1 that the combined accuracy of the models is 

28.57%. The correctly identified features are Gender, Body 

Shape, and Hair Color. The hair length of the subject is very 

long. However the hair is not visible in the image because of 

occlusion by the black clothes. It can be seen from the left 

image in Figure 14 that the hair is barely visible in the dark 

clothes. Therefore, the model could not recognize it and 

produced poor results Lighting is also the reason behind the 

incorrect skin tone. The model classified the subject as very 

dark because of the dark surroundings. In fact, the image, on 

the whole, is very dark because of the dark colored clothes. 

The height of all the subjects was incorrectly classified by the 

application. The most important reason behind the poor 

classification is the image aspect ratio, i.e. the ratio of the 

width and height and the closeness of the person to the camera. 

The closer the person, the bigger he/she seems. Another 

possible reason is described in the subsection 4. 

 

 
Fig. 14 Application results on subject 4 
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4.2. Accuracy Analysis  

The test accuracies of the models on the two categories of 

datasets chosen to train and test the model are listed in Table 

2. It can be seen from Table 2 that the accuracies of the models 

trained using the dataset we created are way better than those 

of the ones trained with the dataset obtained from the survey. 

The most probable reason behind this is the diversity in the 

nature of the survey takers. Every person perceives the 

contents of an image differently. Therefore, the dataset varies 

so much. A similar body structure might be classified into two 

different. 
 

Table 1. Real-time test results 

Subject 

Correctly 

identified features 

(out of 7) 

Accuracy 

Subject 1 3 42.86% 

Subject 2 2 28.57% 

Subject 3 4 57.14% 

Subject 4 3 28.57% 
 

Table 2. Model accuraciesbody types by two survey takers 

Model Survey data Self-created data 

Gender 100% 100% 

Hair Color 53.7% 78.7% 

Hair Length 65.1% 83.1% 

Height 50.8% 77.8% 

Men Shape 53.7% 78.3% 

Women Shape 64.1% 84% 

Skin Tone 60.4% 84.2% 

Event 54.8% 87.1% 

 

These perceptions leave the model confused. The model 

learns trends from the dataset. It considers the data value as 

the ground truth for the image. In a situation where there is a 

conflict in the decision of two records, the model learns all the 

decisions and is rendered confused in the end, thereby leading 

to false results. On the contrary, the dataset composed of a 

single person has one point of view.  
 

The model learns that point of view and produces results 

accordingly. The proof of this statement is the better accuracy 

in the case of the self-created dataset. The last layer of the 

inception model was re-trained on the dataset for each model. 

The models had particular concerns which were addressed 

separately for all. Some of those are listed below.  
 

The height model is a scaled variant. The output of the 

model is dependent on how much frame space the person takes 

and not on his/her real height. The same person, when moved 

closer to the camera, is shown taller. Tests were conducted on 

different subjects using the same location and the same 

distance between the person and the camera to avoid any 

discrepancy caused by the scale variance, and the results were 

recorded. The hair color model gives poor results because of 

two reasons.  

 

The first reason is the vast number of classes. The model 

classifies the image in one of the 24 color classes. Therefore, 

the training data is very less for each class, which is the reason 

behind the poor training of the model. The second reason is 

occlusion. The part of the body containing hair is much less as 

compared to the rest of the body, especially for' very short' 

and' short' hair. Therefore, the object of interest, in this case, 

the hair color, get occluded, thereby leading to poor image 

classification.  

 

The skin tone model results are highly dependent on 

illumination conditions. The model gives different results for 

the same person tested under different light conditions. It is 

important that the user wears clothes with colors which 

contrast with the background, as this helps in avoiding any 

background clutter. 

 

5. Conclusion  
5.1. Limitations  
 

The project has certain limitations, which will be dealt 

with in the later versions of the project. The restrictions are 

listed below:  

5.1.1. Dataset Quantity Restrictions 

The dataset used for the project is not sufficient to 

produce excellent results. The models used to obtain the 

features of a person in an image require a lot of images to learn 

enough to be able to classify a new image. But, the ground 

truth values of these datasets are not available and are required 

to be produced manually thereby restricting the quantity of 

data used for the project.  
 

5.1.2. Dataset Collection Restrictions 

The ground truth values of the features obtained from the 

survey have a sense of heterogeneity. The reason behind this 

is the difference in the view of every person filling the survey. 

Calibration can be done to resolve this issue, by giving an 

example of how to fill the survey to the user so that they know 

what is expected of them.  
 

5.1.3. Input Image Restrictions 

The UI of the application takes as input an image of the 

user. The results produced by the application are best if the 

background of the image is clear, light and contrasting with 

the person in the image. Moreover, the person is required to 

stand in the center of the frame while clicking a picture 

because the image fed to the models is a cropped image that 

extracts the center part of the captured image.  
 

5.1.4. Camera Restrictions 

The camera used to take pictures for the experimentation 

during the project does not take pictures of good quality. The 

specifications have been discussed in section 2.3. The results 

of the models were affected by the poor quality of the images.  
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5.1.5. Application Platform Restrictions  

Currently, the project runs as a desktop application. 

Therefore, the user needs to run the main Python file manually 

to run the application.  
 

5.2. Current Status  

The current project has two parts: identifying features of 

a person in an image and recommending an outfit to them 

based on their input for the event for which they would like to 

dress up. The project uses an image dataset to train a model 

for feature extraction. Eight models have been trained to 

identify the value of each feature. The results of these models 

are displayed to the user and then used as input for the second 

part of the application. The second part of the application 

maps the features of the person with the dataset and displays 

the image that matches the most and is suited for the kind of 

event the user chose initially. The application is running in 

real-time on a desktop computer. The accuracy of all the 

models is not very good, especially for the ones with a lot of 

classes, such as hair color. But some of the models give good 

results such as gender and body type.  
 

5.3. Future Work  

Future work includes creating Android and IOS 

applications for use on devices other than desktop computers. 

The applications can be created using the Kivy library used to 

create the user interface. The dataset used to train the models 

is not sufficient for good results. In the future, more datasets 

will be collected to get better accuracy. The project can be 

expanded by creating models which will classify the image on 

their own. Every event type has a certain set of rules. For 

example, for business casual attire, a woman could wear a 

short-sleeved top, a skirt and a pair of open-toe shoes. The 

dataset can be created using these rules. This process will 

again require human resources to classify the images 

according to the rules. But the accuracy will be better.  

 

5.4. Lessons Learned 

One of the valuable lessons learned during this project is 

that obtaining the appropriate dataset is a tough task. Cleaning 

and preparing the dataset is another arduous task. The more 

the dataset, the better the model learns and the better the 

results are. However, handling such a massive amount of data 

is not an easy task. It requires multi-core processors or more 

in-memory to be able to process the large data. During the 

experimentation phase of the project, the training of each 

model took an average of 5-6 hours. The hours increased as 

the size of the dataset increased. These hours multiplied by 

eight, and the number of times the training was done after 

adjusting the hyperparameters almost led to weeks of the 

training process. The time could have been reduced if the 

processing was fast. The lesson learned from this is that big 

data management requires better tools that can handle it well. 

Another important lesson is that machine learning is very 

powerful, but there is so much still left unexplored in this 

field.
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