
International Journal of Computer Trends and Technology Volume 72 Issue 8, 42-52, August 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I8P107 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

E-Stylist: A Machine Learning Aided Fashion Stylist

Priyank Singh1, Nishtha Ahuja2

1,2Rochester Institute of Technology, USA.

1Corresponding Author : erpriyanksingh@gmail.com

Received: 10 June 2024 Revised: 15 July 2024 Accepted: 05 August 2024 Published: 29 August 2024

Abstract - The common key to success in all sectors is perfect attire. The first thing a person showcases is his/her personality, a

significant portion of which is taken by the attire. The art of dressing up in the right manner is not known to all. Not everyone is

skilled to be a fashion stylist. But it is important that one has his/her style right to get recognized. This project uses machine

learning to create an application that will act as a fashion stylist for the end user. The application takes as input the event the

user wants to dress for and an image of the user. The image can be captured in real-time, or a pre-existing image can be fed to

the application. The application performs feature extraction on the image and displays certain features as a result. These include

gender, hair color, hair length, height, body shape, skin tone and the event for which the attire seems best suited. The system

then recommends an image that suggests an attire the user can consider wearing for the kind of event he/she mentioned

according to his/her body features. This recommendation is based on the features extracted from the user's image and the

previous learnings of the model. The technologies used for the project are Python and TensorFlow.

Keywords - Machine Learning, E-Stylist, Fashion, Neural network, CNN.

1. Introduction
Rachel Zoe says," Style is a way to say who you are

without having to speak" [1]. A person's style says hundreds

of words about her without actually saying anything. Having

said that, not everyone knows the art of styling themselves,

and not everyone can afford a personal stylist. The project's

aim is to create a machine learning-based electronic personal

stylist for daily use with just a few clicks. We present an

application that is artificially engineered to suggest attire for a

person based on factors such as the individual's body shape,

hair length, the kind of event he/she wants to dress up for,

etcetera. The application uses state-of-the-art machine

learning techniques, including convolution neural networks,

to reach its goal.

The approach used in the project to create all eight

classification models is called Data driven approach in that the

model is fed with training data that consists of pre-labeled

images. The models look at these examples and learn the type

and other details about the class. The hyperparameters of the

models were tuned by dividing the training dataset further to

obtain a set of validation data from it. The adjustment was

made to ensure that the model was behaving well.

Hyperparameters are the high-level concepts defined before

the training process starts, such as setting up the learning rate

or the number of layers. The subsequent chapters will discuss

the adjustments made in the hyperparameters. The following

sections will talk about a few concepts used in the creation of

the application in detail.

1.1. Neural Network

A neural network is a biologically inspired system that

tries to act like a human brain to perform activities like

classifying an object [2]. It is a network or a graph of many

neurons that are connected to each other in an acyclic fashion

to avoid any infinite loop. The network is arranged in the form

of various layers consisting of neurons. The neurons of one

layer are connected to the ones of the next layer. However, the

neurons in the same layer are not connected to each other. A

layer in which all the neurons are connected to all the other

neurons of the adjacent layers is called a fully connected layer.

The architecture of a two-layered neural network is shown

below.

Fig. 1 Neural network architecture

Input layer Hidden layer Output layer

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

43

A neural network is made up of an input layer, an output

layer, and some hidden layers [3]. In Figure 1, the example has

one hidden layer and (4+2) = 6 neurons. The input is not

considered as a layer, and neither are the neurons it has, in the

total count for neurons. The number of hidden layers in a

neural network is variable. In Figure 1, there is only one

hidden layer. There is a transfer of knowledge between the

neurons of one layer to the other, just like the neurons in a

brain. The number of layers varies from model to model. The

more the number, the better the handling of complex data. But,

a lot of layers can sometimes lead to overfitting of the model.

Overfitting is a phenomenon in which a model is too fit to

classify a particular type of data, thereby resulting in a biased

prediction. Therefore, for a simpler dataset, fewer layers are

preferred.

1.2. Convolutional Neural Network (CNN)

 A CNN is a type of neural network with only some

differences. The most important difference is that the input to

a CNN is a dataset composed of images. The network assumes

that the dataset will consist of images and is, therefore,

prepared to handle three dimensions: width, height, and depth.

The CNN architecture is shown in the Figure 2.

1.3. Inception Model

1.3.1. TensorFlow

TensorFlow is a platform to execute machine learning

algorithms and visualize the results [14]. This project uses

TensorFlow for computer vision and information retrieval. It

provides a lot of APIs enabling the implementation of deep

neural networks. The advantage of using TensorFlow is that

the result is device-independent, making it flexible [14].

1.3.2. Inception in TensorFlow

This project uses Inception-v3 [17] as the base to build

the application. Inception is a software based on convolutional

neural networks and uses TensorFlow. This model has been

trained on the ImageNet [15] dataset and is available for

research and development.

Fig. 2 CNN architecture

The project uses the Inception model for development

because of its low computation cost and better performance

[17], making it the best fit. The details about the changes made

to the inception model for this project are discussed in Chapter

2.

1.4. Kivy

The UI of the project has been designed using Kivy [13]

which is an open source software. Kivy allows the same

application to be deployed on three platforms, viz. Desktop,

Android, and IOS. This project uses the services for the

Desktop version of the software. Additionally, Kivy provides

a broad range of tools to access the hardware of the device and

various support libraries to make the user interface appear

fancy.

1.5. Dataset

The image dataset used in the project development has

been collected from Liu et al. [16]. The authors provide a rich

dataset comprising 800,000 images which are highly

annotated and are taken against a variety of backgrounds. The

project uses some of these images for feature detection of

clothes worn by humans against a plain and bright

background. Approximately 1000 images were used from this

dataset to extract the necessary information. The techniques

used to obtain this information are described above.

1.6. Related Work

Machine learning has impacted fashion in many ways.

Companies like Amazon are using recommendation systems

to suggest outfits to users based on their search history. They

train their models according to the user requirements. But the

field still has a way to go. The following are some of the

inspirations for our work.

1.6.1. Style-Me

Style-Me [18] is an application that uses AI techniques to

create a fashion stylist. The authors use a score-based method

to rank nearly 500 looks. The dataset created for this

application consists of" 32 dresses and 20 shoes for 4 different

events" [18]. The application is based on the user's

perspective, and the scores are adjusted accordingly. The

authors have trained the models using Artificial Neural

Network [18]. The system architecture of Style-Me consists of

5 elements, viz." an Initialization program, Database, Style

Engine, Learning Components and User Interface" [18]. The

application starts with the initialization program, which takes

input from the user in the form of a quiz. The quiz consists of

8 questions, the result of which is a style out of the six

predefined styles in the application, namely, Classic,

Dramatic, Gamin, Ingenue, Natural, and Romantic. Every

style has its database which is accessed once the style is

obtained from the user's quiz results. The database consists of

various tables, some of which include information related to

the clothing, and one table consists of a view. The view stores

depth

h
eig

h
t

Input layer Hidden layer 1 Output layer

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

44

information obtained by querying multiple tables to keep them

in one place. The output of the quiz is also fed to the Style

Engine, which pairs different clothing attributes, such as

dresses and shoes and stores them in a new table in the

database. Learning components comprise an artificial neural

network that is trained on the dataset obtained from the

database portion of the architecture. The output of the learning

components is a score indicating how good the newly

designed look is. The authors performed five different

experiments to adjust the hyperparameters such that the

correlation coefficient with the item's attribute is the

maximum. The final choice included using a Multilayer

Perceptron classifier with one hidden layer consisting of 20

hidden units at a learning rate of 0.3 and a momentum term of

0.1. Momentum is used to speed up the process and improve

the performance.

1.6.2. Google Muze

Google, in collaboration with Zalando and StinkDigital,

proposed a design engine that is capable of creating an outfit

for a particular person [10]. The person acts as a muse for the

neural network, which has been trained already. The system

asks the user some questions about their preferences and

recommends fashion looks tailor-made for them. The dataset

used to train the model was created by 600 fashion stylists

[10]. The design is built on TensorFlow. However, the results

of the project are not compelling and need a lot of

improvements before the application can be used in real-time

as a fashion stylist [6].

2. Design

The project's aim is to create a computer vision-aided

application that acts as a personal stylist for a human being.

The project has two parts: extract and display certain features

of a person based on their image taken in real-time or fed

directly to the application, and recommend an outfit to the

user as per their features and the kind of event that they

selected. The application takes a picture of the user and asks

him/her about the kind of event for which he/she would like

to dress up. After analyzing the image and the event, the

application recommends an outfit to the user. The following

subsections explain the architecture of the application and the

working of all the components.

2.1. Architecture

The system design of the project is shown in Figure 3. It

consists of three components that are explained in the

following sections.

2.1.1. Input

The first screen of the application accesses the camera of

the device and takes a picture of the user. The image is

obtained by taking a screenshot of the application screen. The

image thus obtained is cropped to extract the central part to

help increase the performance of the models. For example, a

test image of a user capturing the application is shown in

Figure 4. The image cropped from the original image and fed

to the models is shown in Figure 5.

Fig. 3 System design

Image

to selected

models

all models

event model

result

all models

result

View

Input

Input

Event

Output

Recommen
ded image

7 model
results

Controller

Event

Mapper

Model

Gender

Hair Color

Hair Length

Skin Tone

Body Type

Height

Event

input

recommendation,

features

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

45

The processed images are fed to all the models, which

have been pre-trained, to obtain the features of a person,

including the' event' for which the person seems to be dressed

up. A second input taken from the user is the actual occasion

for which he/she wants to dress up. This value is used to

recommend an outfit to the user that he/she might consider

wearing.

2.1.2. Models

There are eight models in the project, one for gender, hair

length, hair color, skin tone, men's body type, women's body

type and event each. The models are created using the

inception model, as mentioned in subsection 1.3.2. The

architecture of the inception model is given in the figure 6.

The inception model is trained on the ImageNet dataset [15].

This model could work well for our project only if it was

trained on our dataset so that it could learn various features

and aspects of the new images. The dataset used for the same

has been mentioned in detail in section 2.2. The deep network

of the inception model consists of 22 layers. The last layer of

this model was retrained using the dataset for each of the new

models. The model training will be described in Chapter 3.

Once all eight models were re-trained, the testing was

performed on the testing dataset to obtain the accuracy of the

model. The final models were then used in the application to

operate in real time. The input image from the user was fed to

the' gender' model first to obtain the gender of the person. The

value of the gender helped in determining the body type model

to be used, i.e., men's body type for a male and women's body

type for a female. The image was then fed to all seven models,

and the results of the same were displayed on the output

screen for the user's information.

2.1.3. Mapping

The output from the seven models was fed to the mapper

to find the data that resembles the features of the user the most.

This process was done in the following seven steps.

The data was filtered according to the gender of the user.

This filtration reduced the mapping data. The next filter

applied was that of the event. The user gave as input an image

and an event. It is important that the outfit suggested to the

user be well suited for the kind of event the user chooses.

Therefore, the event filter had to be the second one. The

remaining data was filtered according to the user's body type.

The body type was given preference because the body type of

a person is crucial in determining the kind of clothes they

should be wearing. In the case of a rollback from any further

steps, it would be safe to determine attire based on the body

type of a person. [7] says that a woman with a rectangular

shape should try to wear a long jacket as it makes her look

lean. It is well proven that the outfit worn according to the

body type is the one that fits the best. The body shape filter

was followed by the height filter. The height of a person plays

a vital role in the outfit determination. For example, as [12]

says, shorter men should go for vertical stripes in their outfits.

It does not just look appealing but also makes one seem taller.

After filtering the data with the height, the hair color filter

was applied. The reason behind choosing this feature was the

vast number of categories in it, precisely 24. The number of

images distributed in each category was very less. Therefore,

the dataset was reduced massively. The next filter was chosen

to be the skin tone of the person. Skin tone is not a

predominant factor, but it can sometimes determine the type

of colors one should prefer to magnify or suppress a bold look.

The last filter applied was that of hair length because hair

length is not an important factor in determining the outfit. At

any step, if the number of results was empty, the mapper was

rolled back to the previous step. The rollback was done

assuming that the order chosen for the filters was the best fit

for every case.

2.1.4. Output

The output is shown to the user in two forms: their body

features and an outfit recommended as per their event request

and their body features. Figure 7 shows a sample output

screen. It consists of the cropped input image that was fed to

all the models, the various features displayed in the form of a

list and an image of the recommended outfit per the event the

user selected.

2.2. Data Collection and Preprocessing

The image dataset used in the project has been obtained

from Liu et al. [16]. This dataset consists of 800,000 images

of models posing in different attires. There are 50 categories

of labels for all the images and nearly 1000 attributes which

leaves no room for redundancy and helps better the learning

of the model. The images are annotated to give a diverse range

of information about the outfit. The authors have created four

benchmarks called" Attribute Prediction, Consumer-to-shop

Clothes Retrieval, In-shop Clothes Retrieval, and Landmark

Detection" [16]. The work is available to everyone for further

enhancement. The seven models created for the project

required training. The information needed to train the models

was the image and the ground truth value of the feature the

model was representing for that image. The dataset obtained

from Liu et al. consisted of the images, but the ground truth

value was not available which was the limitation in the dataset.

There were two options for obtaining the ground truth values:

asking a human to determine it or asking a machine to identify

it. There are certain built-in libraries in computer vision to

recognize values of features like the eye color of the person in

a picture. However, these libraries are not available for all the

features that were required for the project.

Moreover, the accuracies of these libraries are not 100%

implying that the ground truth values will not be 100%

accurate. That said, if a human determines the value, such as

the hair color of a person in a picture, he/she may not be 100%

correct either because every human perceives things

differently than any other human. Therefore, the accuracy of

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

46

the model trained with a dataset for which the ground truth has

been determined by a human may not be 100%, but it is still

more reliable than a machine, given the fact that machines

have yet to match the accuracy of a human brain by many

folds. The ground truth values were obtained from humans in

two different forms. One set of data was obtained in the form

of a survey, and another set was created by us. The survey was

created using the software Qualtrics courtesy of the Rochester

Institute of Technology [11]. There were two different

surveys, one for men to take [4] and another for women to take

[9]. The surveys had five images each and six questions about

the images, such as the body type and height of the person in

the image. Adding questions to the Qualtrics software was an

uncomplicated task, but adding a new image in each section

required tweaking in the Javascript. These images were

generated and added randomly to the page so that the same

image was not analyzed again and again. At the end of the

survey, a few questions about the survey taker were asked to

gather information about their features. This information was

taken with the initial idea of testing the model using these.

However, the idea was later dropped, and the information

was not used anywhere in the project. A total of 195 people

took the survey, out of which 121 were females and 74 were

males, leading to a total of 975 data records. The second set of

the dataset was created by us manually by filling out the

ground truth values of the features. It comprised a total of 122

records. The dataset obtained by both the methods described

above was not enough to train the models. Each model had a

set of categories into which the dataset was divided, such as

six categories for skin tones. The number of images left in

each category was very few at the end of the distribution

process and did not meet the minimum requirement of the

Inception model. It required that each folder had at least 20

images in it to train the model. Therefore, the dataset needed

augmentation. The number of records was increased 11 times

by augmenting data in 11 different ways. These included

flipping horizontally, rotating, blurring, zooming, adding

random noise, adding salt and pepper noise, swirling, affining,

contrasting, increasing intensity, decreasing intensity and

adding histogram equalization to the images. The new dataset

comprised 10,725 images for the survey dataset and 1,342

images for the dataset created by us. However, the ground

truth values of the augmented images were the same as the

original images.

The final dataset was split into three categories: Training,

Validation, and Testing in the ratio 80:10:10. This split was

done by the inception model. The training dataset is the subset

that is used to train the models. The models learn trends and

features from the training dataset so that they can classify new

images later. The validation dataset is used to test the model

during the training period to make sure that the model is doing

good. If the accuracy during validation is substandard, the

hyperparameters are adjusted to increase it. We faced a

situation like this during the training process and had to make

the necessary adjustments, which will be discussed in Chapter

3. If the validation accuracy is exceptionally high, it implies

that the model is overfitting and the dataset needs to be

changed accordingly. We did not face this issue during model

training. Once the models were trained and validated, they

were tested on the test dataset. The testing dataset has to be

completely new to the models to avoid bias and obtain

accurate results. The accuracy of both the models will be

discussed in Chapter 4.

2.3. System Requirements

2.3.1. Hardware

Camera Requirements

The desktop application requires a camera in the device

to capture the image of the user in real time. The camera used

during the project experimentation was the inbuilt 720p

camera of the MAC laptop.

Device Specifications

The device used for the project was a MAC laptop with

MacOS Sierra, a 2.7 GHz Intel Core i5 processor consisting

of 8 GB memory and 128 GB storage.

2.3.2. Software

Language

The programming for the application was done in Python

version 2.7.11.

UI Framework

The Python framework used for the creation of UI is Kivy

[13]. The system requires Kivy to run the application.

Model Framework

The Python framework used for the creation of neural

network models for feature extraction is InceptionModel [8].

Fig. 4 Originally captured image

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

47

 Fig. 5 Cropped image

Fig. 6 Inception Model Architecture, Image Courtesy: [8]

Fig. 7 Output screen sample

3. Implementation
The project has an MVC (Model-View-Controller)

design. The user interface of the application consists of a

screen which asks for text input from the user and an image of

the user, as described in Section 2. The data is collected by the

View part of the application and is given to the controller. The

controller checks the image for the gender of the person and

passes it to the appropriate models. For example, if the gender

is male, the image will be passed to the men-body-type model

and not the women-body-type model. The models process the

results and give them to the controller. The controller finds the

most appropriate result and sends it to the view to display to

the user.

3.1. View

The UI of the application is created using a library of

python called Kivy [13]. Kivy offers hardware support over

three platforms: desktop computer, Android, and IOS. It has

many widgets for the construction of an application, such as

an input box, dropdowns, images, buttons, etcetera. Three of

the many widgets were used in the application UI, viz.

camera, button, and dropbox. The dropbox widget was used

to offer a list of options for the events from which the user

could choose one. The camera widget was used to access the

camera of the device on which the application was running.

Once the camera was active, a screenshot of the screen was

taken using the button widget and the screenshot feature of the

window provided by Kivy. The event and the image were

passed to the controller for further processing.

3.2. Controller

The controller took the image and passed it to the

appropriate models as mentioned before. The output of all the

models was displayed to the user. Based on the output of the

Hair Color model, an image of the hair color was passed to

the view to display to the user. The image of the hair color

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

48

was displayed to help the user understand the color, which

becomes very difficult with just the name of the color, given

the vast variety of hair colors in the classification. The

controller also acted as the mapper for the second part of the

application. The second part of the application was a

recommendation system where an image was presented to the

user as a recommendation of what he/she could wear based on

the event he/she provided. The controller chose an image from

the database that resembled the features of the user the most

and passed it to the view. The matching was done by the

process described in the subsection 2.1.3.

3.3. Models

The Inception model has been used as the base model to

create eight different models to extract various features of a

person in an image. The last layer of the inception model was

retrained on each dataset for each model. The training process

was iterative, as the hyperparameters needed adjustments

because of low accuracies. In the first training cycle, the

learning rate was set to 0.01, and the number of iterations was

set to 4000. These hyperparameters gave poor accuracies with

the lowest accuracy being 34.3% for the height model. The

learning rate was then reduced to 0.001, but the results became

worse than for the previous learning rate. Therefore, the

learning rate was kept stagnant at 0.01 for the rest of the

experimentation. The number of iterations was then increased

to 70000, 90000, 110000 and 120000. The best results were

obtained from the model with a learning rate of 0.01 and a

number of iterations of 120,000. Figures 8, 9 and 10 show the

decrease in entropy with the increase in the number of

iterations. Entropy, in physics, refers to randomness. But in

terms of big data, entropy refers to unpredictability [5]. It is a

measure of determining the amount of useful information in

the data. The higher the entropy, the more unpredictable the

data is. Therefore, it can be inferred that the value of a

hyperparameter that leads to lower entropy must be preferred.

It can be seen that the entropy for the 120,000 iterations is

almost 0. On the contrary, the entropy for 70,000 iterations is

almost 0.5, and that for 90,000 iterations is almost 0.25.

Therefore, it can be concluded that 1,20,000 iterations were

the best choice for the project.

Fig. 8 Cross entropy for 70,000 iterations

Fig. 9 Cross entropy for 90,000 iterations

4. Analysis

4.1. Experiments

The application was tested in real-time on a few people

with different features in front of the same background and the

same lighting. Four of the subject results are discussed below.

The ground truth values for the measurement of accuracy were

obtained by asking for the true feature values of the test

subjects. The results of the questionnaire were compared to

those obtained from our application. The accuracies are listed

in Table 1.

Fig. 10 Cross entropy for 1,20,000 iterations

4.1.1. Subject 1

Figure 11 shows the results for subject 1. It can be seen

from Table 1 that the combined accuracy of the models is

42.86%. The correctly identified features were Gender, Hair

length and skin tone. The result of the Body Type feature was'

rhomboid' which is very close to the truth value' inverted

triangle'. In the image fed to the model, as shown in the left

image of Figure 11, the shoulders seem a little broad because

of the pose. Therefore, the model confused it with the

rhomboid shape.

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

49

Fig. 11 Application results on subject 1

4.1.2. Subject 2

Figure 12 shows the results for subject 2. It can be seen

from Table 1 that the combined accuracy of the models was

28.57%. The correctly identified features were gender and

skin tone. The subject's body shape is oval, but in the image,

it looks like a triangle, confusing the model. The hair length

of the user is long.

In the image, the hair is visible as growing upwards. But

for the model, long hair length implies that the hair is growing

downwards beyond the head.

Fig. 12 Application results on subject 2

4.1.3. Subject 3

Figure 13 shows the results for subject 3. It can be seen

from Table 1 that the combined accuracy of the models is

57.14%. The correctly identified features are Gender, Body

Shape, Hair length, and Event.

The skin tone of the subject is very light. But in the image,

it seems a little darker because of the poor lighting. Hence, the

incorrect skin tone by the feature. Although the value is given

by the model was white and fair, which is very close to the

actual value.

Fig. 13 Application results on subject 3

 4.1.4. Subject 4

Figure 14 shows the results for subject 4. It can be seen

from Table 1 that the combined accuracy of the models is

28.57%. The correctly identified features are Gender, Body

Shape, and Hair Color. The hair length of the subject is very

long. However the hair is not visible in the image because of

occlusion by the black clothes. It can be seen from the left

image in Figure 14 that the hair is barely visible in the dark

clothes. Therefore, the model could not recognize it and

produced poor results Lighting is also the reason behind the

incorrect skin tone. The model classified the subject as very

dark because of the dark surroundings. In fact, the image, on

the whole, is very dark because of the dark colored clothes.

The height of all the subjects was incorrectly classified by the

application. The most important reason behind the poor

classification is the image aspect ratio, i.e. the ratio of the

width and height and the closeness of the person to the camera.

The closer the person, the bigger he/she seems. Another

possible reason is described in the subsection 4.

Fig. 14 Application results on subject 4

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

50

4.2. Accuracy Analysis

The test accuracies of the models on the two categories of

datasets chosen to train and test the model are listed in Table

2. It can be seen from Table 2 that the accuracies of the models

trained using the dataset we created are way better than those

of the ones trained with the dataset obtained from the survey.

The most probable reason behind this is the diversity in the

nature of the survey takers. Every person perceives the

contents of an image differently. Therefore, the dataset varies

so much. A similar body structure might be classified into two

different.

Table 1. Real-time test results

Subject

Correctly

identified features

(out of 7)

Accuracy

Subject 1 3 42.86%

Subject 2 2 28.57%

Subject 3 4 57.14%

Subject 4 3 28.57%

Table 2. Model accuraciesbody types by two survey takers

Model Survey data Self-created data

Gender 100% 100%

Hair Color 53.7% 78.7%

Hair Length 65.1% 83.1%

Height 50.8% 77.8%

Men Shape 53.7% 78.3%

Women Shape 64.1% 84%

Skin Tone 60.4% 84.2%

Event 54.8% 87.1%

These perceptions leave the model confused. The model

learns trends from the dataset. It considers the data value as

the ground truth for the image. In a situation where there is a

conflict in the decision of two records, the model learns all the

decisions and is rendered confused in the end, thereby leading

to false results. On the contrary, the dataset composed of a

single person has one point of view.

The model learns that point of view and produces results

accordingly. The proof of this statement is the better accuracy

in the case of the self-created dataset. The last layer of the

inception model was re-trained on the dataset for each model.

The models had particular concerns which were addressed

separately for all. Some of those are listed below.

The height model is a scaled variant. The output of the

model is dependent on how much frame space the person takes

and not on his/her real height. The same person, when moved

closer to the camera, is shown taller. Tests were conducted on

different subjects using the same location and the same

distance between the person and the camera to avoid any

discrepancy caused by the scale variance, and the results were

recorded. The hair color model gives poor results because of

two reasons.

The first reason is the vast number of classes. The model

classifies the image in one of the 24 color classes. Therefore,

the training data is very less for each class, which is the reason

behind the poor training of the model. The second reason is

occlusion. The part of the body containing hair is much less as

compared to the rest of the body, especially for' very short'

and' short' hair. Therefore, the object of interest, in this case,

the hair color, get occluded, thereby leading to poor image

classification.

The skin tone model results are highly dependent on

illumination conditions. The model gives different results for

the same person tested under different light conditions. It is

important that the user wears clothes with colors which

contrast with the background, as this helps in avoiding any

background clutter.

5. Conclusion
5.1. Limitations

The project has certain limitations, which will be dealt

with in the later versions of the project. The restrictions are

listed below:

5.1.1. Dataset Quantity Restrictions

The dataset used for the project is not sufficient to

produce excellent results. The models used to obtain the

features of a person in an image require a lot of images to learn

enough to be able to classify a new image. But, the ground

truth values of these datasets are not available and are required

to be produced manually thereby restricting the quantity of

data used for the project.

5.1.2. Dataset Collection Restrictions

The ground truth values of the features obtained from the

survey have a sense of heterogeneity. The reason behind this

is the difference in the view of every person filling the survey.

Calibration can be done to resolve this issue, by giving an

example of how to fill the survey to the user so that they know

what is expected of them.

5.1.3. Input Image Restrictions

The UI of the application takes as input an image of the

user. The results produced by the application are best if the

background of the image is clear, light and contrasting with

the person in the image. Moreover, the person is required to

stand in the center of the frame while clicking a picture

because the image fed to the models is a cropped image that

extracts the center part of the captured image.

5.1.4. Camera Restrictions

The camera used to take pictures for the experimentation

during the project does not take pictures of good quality. The

specifications have been discussed in section 2.3. The results

of the models were affected by the poor quality of the images.

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

51

5.1.5. Application Platform Restrictions

Currently, the project runs as a desktop application.

Therefore, the user needs to run the main Python file manually

to run the application.

5.2. Current Status

The current project has two parts: identifying features of

a person in an image and recommending an outfit to them

based on their input for the event for which they would like to

dress up. The project uses an image dataset to train a model

for feature extraction. Eight models have been trained to

identify the value of each feature. The results of these models

are displayed to the user and then used as input for the second

part of the application. The second part of the application

maps the features of the person with the dataset and displays

the image that matches the most and is suited for the kind of

event the user chose initially. The application is running in

real-time on a desktop computer. The accuracy of all the

models is not very good, especially for the ones with a lot of

classes, such as hair color. But some of the models give good

results such as gender and body type.

5.3. Future Work

Future work includes creating Android and IOS

applications for use on devices other than desktop computers.

The applications can be created using the Kivy library used to

create the user interface. The dataset used to train the models

is not sufficient for good results. In the future, more datasets

will be collected to get better accuracy. The project can be

expanded by creating models which will classify the image on

their own. Every event type has a certain set of rules. For

example, for business casual attire, a woman could wear a

short-sleeved top, a skirt and a pair of open-toe shoes. The

dataset can be created using these rules. This process will

again require human resources to classify the images

according to the rules. But the accuracy will be better.

5.4. Lessons Learned

One of the valuable lessons learned during this project is

that obtaining the appropriate dataset is a tough task. Cleaning

and preparing the dataset is another arduous task. The more

the dataset, the better the model learns and the better the

results are. However, handling such a massive amount of data

is not an easy task. It requires multi-core processors or more

in-memory to be able to process the large data. During the

experimentation phase of the project, the training of each

model took an average of 5-6 hours. The hours increased as

the size of the dataset increased. These hours multiplied by

eight, and the number of times the training was done after

adjusting the hyperparameters almost led to weeks of the

training process. The time could have been reduced if the

processing was fast. The lesson learned from this is that big

data management requires better tools that can handle it well.

Another important lesson is that machine learning is very

powerful, but there is so much still left unexplored in this

field.

References

[1] Yanan Liu et al., “Energy Consumption and Emission Mitigation Prediction Based on Data Center Traffic and PUE for Global Data

Centers,” Global Energy Interconnection, vol. 3, no. 3, pp. 272-282, 2020. [Crossref] [Google Scholar] [Publisher Link]

[2] Zhen Xiao, Weijia Song, and Qi Chen, “Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment,”

IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1107-1117, 2013. [Crossref] [Google Scholar] [Publisher

Link]

[3] Einollah Jafarnejad Ghomi, Amir Masoud Rahmani, and Nooruldeen Nasih Qader, “Load-Balancing Algorithms in Cloud Computing:

A Survey,” Journal of Network and Computer Applications, vol. 88, pp. 50-71, 2017. [Crossref] [Google Scholar] [Publisher Link]

[4] Y. H. H, and L. X. Zhang, “Energy-Efficient Load Balancing in Cloud Data Centers Using Decision Tree Algorithms,” Journal of Cloud

Computing: Advances, Systems and Applications, vol. 5, no. 1, pp. 1-12, 2016.

[5] Hong Zhong, Yaming Fang, and Jie Cui, “Reprint of “LBBSRT: An Efficient SDN Load Balancing Scheme Based on Server Response

Time”, Future Generation Computer Systems, vol. 80, pp. 409-416, 2018. [Crossref] [Google Scholar] [Publisher Link]

[6] X. Y. Y. Z. Y, and L. L. Chen, “An Intelligent Load Balancing Scheme for Cloud Data Centers Using AI-Based Prediction,” Journal of

Cloud Computing: Advances, Systems and Applications, vol. 9, no. 1, pp. 1-16, 2020.

[7] L. X. J. Z. Y, and L. L. Wang, “Integrating AI with Load Balancing in Cloud Computing Environment,” International Journal of Cloud

Computing, vol. 7, no. 2, pp. 112-127, 2018.

[8] Jaimeel M Shah et al., “Load Balancing in Cloud Computing: Methodological Survey on Different Types of Algorithm,” 2017

International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, pp. 100-107, 2017. [Crossref] [Google

Scholar] [Publisher Link]

[9] Valeria Cardellini, Michele Colajanni, and Philip S. Yu, “Dynamic Load Balancing on Web-Server Systems,” IEEE Internet Computing,

vol. 3, no. 3, pp. 28-39, 1999. [Crossref] [Google Scholar] [Publisher Link]

[10] J. W. Y. W. H, and Z. W. Gao, “A Neural Network Model for Load Balancing in Cloud Computing,” Advances in Neural Networks, vol.

10, no. 1, pp. 205-210, 2014.

[11] Akshat Verma, Puneet Ahuja, and Anindya Neogi, “pMapper: Power and Migration Cost Aware Application Placement in Virtualized

Systems,” ACM/IFIP/USENIX 9th International Middleware Conference Leuven, Belgium, pp. 243–264, 2008, vol 5346. [Crossref]

[Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.gloei.2020.07.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+consumption+and+emission+mitigation+prediction+based+on+data+center+traffic+and+PUE+for+global+data+centers&btnG=
https://www.sciencedirect.com/science/article/pii/S2096511720300761
https://doi.org/10.1109/TPDS.2012.283
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Z+Xiao%2C+W+Song%2C+Q+Chen%2C+Dynamic+Resource+Allocation+Using+Virtual+Machines+for+Cloud+Computing+Environment&btnG=
https://ieeexplore.ieee.org/abstract/document/6311403
https://ieeexplore.ieee.org/abstract/document/6311403
https://doi.org/10.1016/j.jnca.2017.04.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EJ+Ghomi%2C+AM+Rahmani%2C+NN+Qader%2C+Load-balancing+algorithms+in+cloud+computing%3A+A+survey&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804517301480
https://doi.org/10.1016/j.future.2017.11.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reprint+of+%E2%80%9CLBBSRT%3A+An+efficient+SDN+load+balancing+scheme+based+on+server+response+time&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X17325475
https://doi.org/10.1109/ICOEI.2017.8300865
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+in+cloud+computing%3A+Methodological+survey+on+different+types+of+algorithm&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+in+cloud+computing%3A+Methodological+survey+on+different+types+of+algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/8300865
https://doi.org/10.1109/4236.769420
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=V+Cardellini%2C+M+Colajanni%2C+PS+Yu%2C+Dynamic+load+balancing+on+Web-server+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/769420
https://doi.org/10.1007/978-3-540-89856-6_13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=pMapper%3A+Power+and+Migration+Cost+Aware+Application+Placement+in+Virtualized+Systems&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-89856-6_13

Priyank Singh & Nishtha Ahuja / IJCTT, 72(8), 42-52, 2024

52

[12] Rajkumar Buyya et al., “Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th

Utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599-616, 2009. [Crossref] [Google Scholar] [Publisher Link]

[13] Anton Beloglazov et al., “A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems,” Advances in

Computers, vol. 82, pp. 47-111, 2011. [Crossref] [Google Scholar] [Publisher Link]

[14] Yuang Jiang et al., “Resource Allocation in Data Centers Using Fast Reinforcement Learning Algorithms,” IEEE Transactions on

Network and Service Management, vol. 18, no. 4, pp. 4576-4588, 2021. [Crossref] [Google Scholar] [Publisher Link]

[15] S. WilsonPrakash, and P. Deepalakshmi, “Artificial Neural Network Based Load Balancing On Software Defined Networking,” 2019

IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Tamilnadu, India,

pp. 1-4, 2019. [Crossref] [Google Scholar] [Publisher Link]

[16] N. G. V. R, and C. N. Kumar, “Genetic Algorithm Based Load Balancing for Cloud Computing,” International Journal of Computer

Applications, vol. 92, no. 10, pp. 1-5, 2018.

[17] Soumen Swarnakar et al., “Modified Genetic Based Algorithm for Load Balancing in Cloud Computing,”2020 IEEE 1st International

Conference for Convergence in Engineering (ICCE), Kolkata, India, pp. 255-259, 2020. [Crossref] [Google Scholar] [Publisher Link]

[18] Nawaf Alhebaishi, “An Artificial Intelligence (AI) Based Energy Efficient and Secured Virtual Machine Allocation Model in Cloud,”

2022 3rd International Conference on Computing, Analytics and Networks (ICAN), Rajpura, Punjab, India, pp. 1-8, 2022. [Crossref]

[Google Scholar] [Publisher Link]

[19] Jiayin Li et al., “Online Optimization for Scheduling Preemptable Tasks on IaaS Cloud Systems,” Journal of Parallel and Distributed

Computing, vol. 72, no. 5, pp. 666-677, 2012. [Crossref] [Google Scholar] [Publisher Link]

[20] H. G. H. W. Q, and D. G. Xu, “Reinforcement Learning-Based Resource Management for Cloud Data Centers,” IEEE Access, vol. 5, pp.

13118-13128, 2017.

[21] Xin Sui et al., “Virtual Machine Scheduling Strategy Based on Machine Learning Algorithms for Load Balancing,” EURASIP Journal

on Wireless Communications and Networking, vol. 2019, pp. 1-16, 2019. [Crossref] [Google Scholar] [Publisher Link]

[22] Jim Gao Richard Evans, DeepMind AI Reduces Google Data Centre Cooling Bill by 40%, Google Deepmind, 2016. [Online]. Available:

https://deepmind.google/discover/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/.

[23] Emmanuel Okyere, How DeepMind’s AI Framework Made Google Energy Efficient, Nural Research, 2021. [Online]. Available:

https://www.nural.cc/deepmind-ai-framework/.

https://doi.org/10.1016/j.future.2008.12.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+computing+and+emerging+IT+platforms%3A+Vision%2C+hype%2C+and+reality+for+delivering+computing+as+the+5th+utility&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X08001957
https://doi.org/10.1016/B978-0-12-385512-1.00003-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Beloglazov%2C+R+Buyya%2C+YC+Lee%2C+A+Zomaya+%2C+A+Taxonomy+and+Survey+of+Energy-Efficient+Data+Centers+and+Cloud+Computing+Systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/B9780123855121000037
https://doi.org/10.1109/TNSM.2021.3100460
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource+Allocation+in+Data+Centers+Using+Fast+Reinforcement+Learning+Algorithms&btnG=
https://ieeexplore.ieee.org/abstract/document/9497355
https://doi.org/10.1109/INCOS45849.2019.8951365
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+Neural+Network+Based+Load+Balancing+On+Software+Defined+Networking&btnG=
https://ieeexplore.ieee.org/abstract/document/8951365
https://doi.org/10.1109/ICCE50343.2020.9290563
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+Genetic+Based+Algorithm+for+Load+Balancing+in+Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9290563
https://doi.org/10.1109/ICAN56228.2022.10007164
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Artificial+Intelligence+%28AI%29+based+Energy+Efficient+and+Secured+Virtual+Machine+Allocation+Model+in+Cloud&btnG=
https://ieeexplore.ieee.org/abstract/document/10007164
https://doi.org/10.1016/j.jpdc.2012.02.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J+Li%2C+M+Qiu%2C+Z+Ming%2C+G+Quan%2C+X+Qin%2C+Z+Gu+%2C+Online+optimization+for+scheduling+preemptable+tasks+on+IaaS+cloud+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743731512000366
https://doi.org/10.1186/s13638-019-1454-9
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=Virtual+machine+scheduling+strategy+based+on+machine+learning+algorithms+for+load+balancing&btnG=
https://link.springer.com/article/10.1186/s13638-019-1454-9

